Two-dimensional limit of exchange-correlation energy functional approximations in density functional theory
نویسندگان
چکیده
We investigate the behavior of three-dimensional (3D) exchange-correlation energy functional approximations of density functional theory in anisotropic systems with two-dimensional (2D) character. Using two simple models, quasi-2D electron gas and two-electron quantum dot, we show a fundamental limitation of the local density approximation (LDA), and its semi-local extensions, generalized gradient approximation (GGA) and meta-GGA (MGGA), the most widely used forms of which are worse than the LDA in the strong 2D limit. The origin of these shortcomings is in the inability of the local (LDA) and semi-local (GGA/MGGA) approximations to describe systems with 2D character in which the nature of the exchange-correlation hole is very nonlocal. Nonlocal functionals provide an alternative approach, and explicitly the average density approximation (ADA) is shown to be remarkably accurate for the quasi-2D electron gas system. Our study is not only relevant for understanding of the functionals but also practical applications to semiconductor quantum structures and materials such as graphite and metal surfaces. We also comment on the implication of our findings to the practical device simulations based on the (semi-)local density functional method. PACS numbers: 71.15.Mb, 73.20.Dx, 85.30.Vw, 81.05.Tp Typeset using REVTEX
منابع مشابه
Ab-initio study of Electronic, Optical, Dynamic and Thermoelectric properties of CuSbX2 (X=S,Se) compounds
Abstract: In this work we investigate the electronic, optical, dynamic and thermoelectric properties of ternary copper-based Chalcogenides CuSbX2 (X= S, Se) compounds. Calculations are based on density functional theory and the semi-classical Boltzmann theory. Computations have been carried out by using Quantum-Espresso (PWSCF) package and ab-initio pseudo-potential technique. To estimate the e...
متن کاملLocality of correlation in density functional theory.
The Hohenberg-Kohn density functional was long ago shown to reduce to the Thomas-Fermi (TF) approximation in the non-relativistic semiclassical (or large-Z) limit for all matter, i.e., the kinetic energy becomes local. Exchange also becomes local in this limit. Numerical data on the correlation energy of atoms support the conjecture that this is also true for correlation, but much less relevant...
متن کاملStrong correlation in Kohn-Sham density functional theory.
We use the exact strong-interaction limit of the Hohenberg-Kohn energy density functional to approximate the exchange-correlation energy of the restricted Kohn-Sham scheme. Our approximation corresponds to a highly nonlocal density functional whose functional derivative can be easily constructed, thus transforming exactly, in a physically transparent way, an important part of the electron-elect...
متن کاملAccurate Density Functional with Correct Formal Properties: A Step Beyond the Generalized Gradient Approximation
We approximate the exchange-correlation energy of density functional theory as a controlled extrapolation from the slowly varying limit. While generalized gradient approximations (GGA’s) require only the local density and its first gradient as input, our meta-GGA also requires the orbital kinetic energy density. Its exchange energy component recovers the fourth-order gradient expansion, while i...
متن کاملSome Fundamental Issues in Ground-State Density Functional Theory: A Guide for the Perplexed.
Some fundamental issues in ground-state density functional theory are discussed without equations: (1) The standard Hohenberg-Kohn and Kohn-Sham theorems were proven for a Hamiltonian that is not quite exact for real atoms, molecules, and solids. (2) The density functional for the exchange-correlation energy, which must be approximated, arises from the tendency of electrons to avoid one another...
متن کامل